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Introduction
Federated Learning (FL)18 is a collaborative machine learning method in which clients never share
the raw data but send the model update information (e.g. gradients or model difference) to the
server for the update of the globalmodel. The globalmodel is kept up-to-datewith a large number
of the gradients from the participants of FL. Therefore, new users can tap into such a globally up-
to-date model whenever they join LINE.

FL preserves the privacy of users with the federated protocol where clients never share the raw
data, but only share the model update information with the server. Exposing only the model up-
date information like gradients would seem sufficient to protect the privacy of individual users.
However, several studies have shown that the raw data can be reproduced from the gradients15,24.
As we place the highest priority on the privacy of individual users, we have adopted differential
privacy as a measure of rigorous privacy guarantees.9,11.

Differential privacy (DP)9,11 is the golden standard privacy notion used in various products, ser-
vices and statistical surveys2,8,13. DP is achieved by injecting a particular noise. The noise achiev-
ing DP makes any outputs computed from user data indistinguishable. The indistinguishability is
quantified by privacy parameters like ϵ and δ.

Local differential privacy7,19 has been a widely accepted privacy standard that makes it hard to
distinguish randomized responses crafted from any inputs to the extent quatified by privacy pa-
rameters ϵ and δ.

One way to implement FL under differential privacy is to introduce a privacy mechanism for each
client to preserve their own privacy, and then each client sends the noise-injected model update
information to the server18,22. Since the collected model update information is indistinguishable
among a batch of user reports, the server cannot infer individual properties, but estimates the
global characteristics from uploaded user reports to update the global model.

Find the following example of FL implementation on the LINE app for sticker recommendation.
Through the FL processes, LINE reinforces privacy and, at the same time, improves the usability of
machine learning features like sticker recommendation as theMLmodel lists up sticker candidates
without explicitly receiving the local "activity log" such as "Sent Sticker Data". While preserving the
privacy of users via differential privacy mechanism, LINE performs federated learning to improve
the efficacy of the sticker recommendation. See the details on the LINE’s Security and Privacy a.

This white paper offers in-depth details on differential privacy in LINE’s federated learning plat-
form. The target audience of this white paper is the engineers and developers who focus on ma-
chine learning or security, presumably with a strong understanding of statistics, data engineering
and machine learning.

ahttps://linecorp.com/en/security/article/459
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LINE Federated Learning Platform
LINE introduced a federated learning platform to improve the performance of recommendations.
The first application of the federated learning platform is "sticker recommendation". This section
gives an overview of the FL process between LINE apps and LINE’s server.

Overview
Under the federated learning framework, machine learning features run on the clients, using
preference information, as personalized local machine learning models are stored on the clients.
These features offer users prompt personalization. Sticker recommendation is the first use-case
of this federated learning technology (Refer to the LINE’s Security & Privacy a formore information
on sticker suggestion).

The federated learning technology reduces the information LINE receives from users by process-
ing their action histories like "Sent Sticker Data" on their device, and keeps raw user data on their
devices, which reinforces user privacy preservation.

Figure 2.1: Overview of LINE Federated Learning for Sticker recommendation. See the details on
the LINE’s Security & Privacy a.

The federated learningprocess is comprisedof two sub-processes: "A. Inference" and "B. Training".
Figure 2.1 shows the federated learning process for sticker recommendation.

Inference Process
A-1. LINE Server generates "augmented information" for the target machine learning task.
A-2. LINE Server also generates a "global model".
A-3. Each LINE app on the user device downloads the "augmented information" and "global

model" from the server.
A-4. LINE apps extract the local user "activity log" along with users actions. LINE apps use the

"activity log" and the "local model" to infer the preferable items from the set of candidate
items. This step takes place on the user device.

2



Differential Privacy in LINE Federated Learning v1.0

Training Process
B-1. Randomly selected LINE apps perform model training on the user devices, using the local

"activity log", and update the local model on their devices. LINE apps remove the "activity
log" after the "activity log" is used for local model training. That means any "activity log" is
used only once.

B-2. As an additional post process, LINE apps add the noise to the model, using the "Differential
Privacy" technology. When sending the updated local model, LINE apps also drop the user
identifier to send theminimumamount of information. This privacy-preserving process aims
to make others difficult to estimate the actual activities by the user via the updated local
model.

B-3. The server receives updated local models frommultiple users, randomly selected in B-1. The
models are averaged and used to update the global model. The collaborativemachine learn-
ing method that involves both client devices and server(s) is called "Federated Learning".

Algorithm Overview
This section introduces an overview and mathmatical notations of the federated learning algo-
rithm with differential privacy guarantees.

Client-side Algorithm
1. Let θi be the client i’s local model parameters. Copy the downloaded global model parame-

ters θglobal to the local parameters as θi ← θglobal.
2. Train the local model. Let θ′

i be the trained model parameter from θi.
3. Compute the model difference ∆i as ∆i ← θ′

i − θi.
4. Randomize the model difference as ∆∗

i ← R(∆i), using the local randomizer R to satisfy
(ϵ0, δ0)-LDP (See the details under the section on "Client-side Local Randomizer").

5. Report the randomized model difference ∆∗
i to the server.

Server-side Algorithm
When the server receives a batch of randomized model differences, the server computes the av-
erage over the batch, having m randomized model differences.

∆̄∗ = 1
m

∑
i∈[m]

∆∗
i (3.1)

Then, the server updates the global model as follows:

θglobal ← θglobal + ∆̄∗ (3.2)

The server repeats this process for each batch.

3



Differential Privacy in LINE Federated Learning v1.0

Privacy Model
We attempt to preserve the privacy of local data for each user. Especially, we employ a privacy
enhancing mechanism to keep each model update information (i.e. model difference) sent from
each client differentially private in the federated learning process above.

This section introduces local differential privacy, and describes the privacymodel we used, namely
event-level local differential privacy, and its privacy composition.

Local Differential Privacy

Local differential privacy7,19 has been a widely accepted privacy standard that makes it hard to
distinguish randomized responses crafted from any inputs to the extent quantified by privacy pa-
rameters ϵ and δ.

Definition 1. (ϵ, δ)-Local Differential Privacy. Given privacy parameters ϵ ∈ R+
0 and δ ∈ [0, 1], a

randomized mechanismM : X → S satisfies (ϵ, δ)-local differential privacy if, for any pair of inputs
X, X ′ ∈ X and any subset of outputs S ⊆ S, it holds that

Pr[M(X) ∈ S] ≤ exp(ϵ) Pr[M(X ′) ∈ S] + δ (4.1)

To utilizeDPproperly, weneed to consider a privacymodel including client-side datamanagement,
privacy budget accounting, and design of local randomizer.

Event-level Local Differential Privacy
LINE apps drop user identifiers when reporting the randomized model update information for
"de-identification". That means the server cannot link multiple reports from a single client since
the explicit identifier of the user is removed. In addition, the local data (i.e. "activity log") is used
only once for training and immediately discarded. Such "disjoint data usage" makes capturing
the history of any user’s activities untraceable and enables parallel privacy composition23 over the
sequential observations from a single client.

Each client ensures (ϵo, δ0)-LDP for a single output (i.e. model difference) on each client. Assume
a reporting period as an event, a client gives event-level local differential privacy for each output by
local randomizer. Event-level differential privacy is defined in10. Event-level LDP is an extension of
it in consideration of local privacy.

Another paradigm of preserving the privacy of client’s outputs is user-level LDPwhich ensures LDP
over all the client’s outputs. However, we do not have practical solutions for satisfying the user-
level LDP for the unlimited size of the sequences. Therefore, we justify the use of the event-level
LDP with the privacy-enhancing features defined as "de-identification" and "disjoint data usage".

We also introduce a random sampling of participants for a single round of federated learning. This
sampling strategy makes it hard to track activities of a specific user.
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Privacy Composition
As this federated learning platform employs "de-identification" and "disjoint data usage", we con-
sider any randomized submissions from clients are independent. Thus, we account for the privacy
consumptions per event.

As described in the federated learning process above, we assume that a set of training samples
is removed from the client whenever the set is used to generate a model difference. That means
a client never utilizes any training samples twice. Between any two reporting periods, the set of
training samples do not have any redundant data. At each reporting period, the client produces a
randomized model difference from a single set of training samples that the client has never used.

Due to the assumption above, we compute the privacy composition of a single client over the all
reporting periods by the parallel composition theorem23. That is, the total privacy consumption
for any set of training samples is always (ϵ0, δ0).

Furthermore, under this assumption, how many times each client submit randomized model dif-
ference does not affect the privacy consumptions. However, we introduce a parameter that limits
the number of submissions per client to keep balance (i.e. fair) among observations from the
clients.

Client-side Local Randomizer
To ensure the LDP guarantee discussed above, we employ a local randomizer R that injects the
Gaussian noise into a raw model update information.

We here introduce how to design the Gaussian noise to satisfy (ϵ0, δ0)-LDP. We also utlize secure
random sampling to robustly generate the Gaussian noise.

Overview

We employ the Gaussian analytical mechanism3, which is an exntension of the Gaussian mecha-
nism, as the noise injecting method. The step of the local randomizer R is described as follows:

1. Sample a Gaussian noise z as z ∼ N (0, (2Cσ)2Id).
2. Add the sampled Gaussian noise z to the clipped model difference as ∆∗

i ← πC(∆i) + z.

where σ is the noise scaler, C is the clipping threshold, πC(·) is the clipping operator, and d is the
dimension of the model difference ∆i. The noise scale 2Cσ is required to satisfy (ϵ0, δ0)-LDP. How
to set the noise scaler σ also follows the Gaussian analytical mechanism3. The detailed designs of
the noise scale and the clipping operator are described in later part.
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Norm Clipping

The norm clipping1 bounds the ℓ2-norm of the gradient at a pre-defined constant value to bound
the sensitivity at the constant. The norm clipping is defined as follows:

πC(∆i) = ∆i ·min(1,
C

||∆i||2
) (5.1)

where C is the clipping threshold.

Gaussian Mechanism for LDP
To apply a mechanism designed for central DP (e.g. Gaussian mechanism) to satisfy local DP, we
need to modify the noise scale of the mechanism. Local DP is known as a bounded DP, while
central DP is a unbounded DP20. Between bounded DP and unbounded DP, the sensitivity under
bounded DP is at most twice the sensitivity under unbounded DP. Therefore, to satisfy (ϵ0, δ0)-LDP,
we have to double the noise scale when we use the mechanism designed for central DP. Thus, in
the Gaussian mechanism, the required noise scale is 2Cσ, where C is the clipping threhold and σ

is the noise scaler defined by (ϵ0, δ0).

Secure Random Sampling
A naive implementation of sampling the Gaussian noise is known to be vulnerable against sta-
tistical attacks. The vulnerability is caused by the approximation of real values to floating point
numbers. To avoid the issue, we employ the secure random sampling16. In this solution, we need
to run the sufficient number of samples to compute the average for the sampled Gaussian noise.
We sample the Gaussian noise six times for this purpose.

Further Extension
Note the description here is not included in the first release of LINE’s federated learning platform.
We are now studying the feasibility of the following extensions to reinforce the usability of feder-
ated learning under rigorous privacy guarantees.

One of the most important extensions will be introducing a trusted shuffler4,6,12,14,21 to amplify
local privacy through anonymizing the identity of clients. To introduce the shuffle model, we also
need to consider how to securely implement the shuffler. Our current idea is to use TEEs (Trusted
Execution Environments). This will improve the efficacy of federated learning while securely pre-
serving the privacy of users under differential privacy with such trusted entities.

Secure aggregation5,17 with secure computation is also another option for us. The secure aggre-
gation will increase the efficacy under the securely implemented private federated learning with
a combination of secure multi-party computation, homomorphic enryption, TEE, and differential
privacy.
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Conclusion
This white paper describes how federated learning on LINE Apps preserves the privacy of users
with the differential privacy mechanisms. We always strive to seek better implementation and
hyper-parameters that achieve higher efficacy as well as preserving sufficient privacy.
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